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The motion of a charged particle in general relativity 
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Received 14 December 1978, in final form 13 February 1979 

Abstract. A new approach to the problem of the motion of a self-interacting massive 
charged particle in general relativity is presented. A charged Robinson-Trautman solution 
is used as a general relativistic model of such a particle. Such a solution is shown to generate 
a unique world line in its own H space, which is interpreted as the world line of the particle. 
Using the R-T dynamical relations, the equation of motion of the particle is derived, which, 
in the limiting case of zero curvature, is shown to be the same as the classical Lorentz-Dirac 
equation of motion. 

1. Introduction 

The purpose of this paper is to introduce a new approach to the problem of motion in 
general relativity which makes essential use of the H space of Newman and Penrose and 
others (see e.g. Hallidy and Ludvigsen 1979, Hansen and Ludvigsen 1977, Hansen et al 
1978, KO et al 1976, 1977, Lind et al 1972, Ludvigsen 1977, 1978). In this paper we 
consider only the motion of a charged self-interacting particle. The motion of a general 
system will be discussed in a later paper. (Hallidy and Ludvigsen 1979, KO et al 1977). 

A charged Robinson-Trautman solution (see Newman and Posadas 1969) is used as 
a general relativistic model of a classical self-interacting charged particle. Such 
solutions possess the unique property that the null cones emanating from the singularity 
are completely shear-free. These null cones intersect 9+ in a one-parameter family of 
shear-free cuts and, when 9' is complex, describe a world line in the H space of the 
solution. This world line is interpreted as the world line of the particle. In the case of 
flat space-time M with the singularity replaced by a particle, H can be identified with 
M, and the world line in H can be identified with the world line of the particle?. In the 
case of curved space-time, however, H cannot be identified with the original space- 
time; but the world line in H can be thought of as, in a sense, the asymptotically 
observed world line of the particle. 

Conserved quantities m and e are obtained from the dynamical equations governing 
the solution and are defined to be the mass and charge of the solution. A Maxwell field 
+A,B* on N is obtained from the radiation component 6; of the Maxwell field of the 
solution. By comparison with the flat space case 4 ~ 3 ~ '  is interpreted as the radiation 
field of the particle. Making use of the dynamical equations (essentially the Bianchi 
identities), the equation of motion of the particle is obtained and shown to have the 

t Strictly speaking, the H space of flat space-time M should be identified with a complex thickening C'M of 
M. However, since, in the case of flat space-time, the H space construction works for an arbitrarily small 
thickening, we may take the thickening to be zero and identify H with M (see footnote on page 1758). 
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1758 M Ludvigsen 

form 
- 

A A B  muAA = 4 2  evs'd , 

which, in the limiting case of zero curvature, is shown to be the same as the Lorentz- 
Dirac equation of motion for a charged particle. Unlike the classical equation, this 
equation is obtained without resorting to any renormalisation procedure or ad hoc 
assumptions. 

Sections 2 and 3 are intended as a review of the properties of weighted functions 011 

C'4' and of the intrinsic H-space formalism. Since most of this material has been 
covered elsewhere (Hansen and Ludvigsen 1977), few detailed calculations are given. 

In 0 4 the radiation component of the Maxwell field of an Einstein-Maxwell solution 
is shown to determine a Maxwell field on the H space of the solution. This field IS 

interpreted as the radiation field of the solution. In 0 5 the classical Lorentz-Dirac 
equation of motion for a charged particle is discussed; and finally, in 0 6 the general 
relativistic equation of motion for a charged particle is derived This is shown to have 
the same form as the corresponding equation of § 5. 

It is assumed that the reader is familiar with the properties of 4' as well as with 
spin-weighted functions and the associated 3 (edth) operator. 

2. H space and weighted functions on C ' f  

In this section we present a review of the intrinsic H space formalism and weighted 
functions on C'4'. The reader is referred to Hansen and Ludvigsen (1977), KO et a1 
(1977) and Ludvigsen (1977) for a fuller discussion of these topics. 

Let M be the space-time of an asymptotically flat solution of the Einstein-Maxwell 
equations and 4' (Penrose 1968) its future null infinity, defined by R = 0, where R is the 
conformal factor. In general there are no good cuts (shear-free space-like cross 
sections) of 4'. However, if 4' is extended into the complex by allowing the 
coordinates on 4' to assume complex values, good cuts can be shown to exist and to 
form a four-dimensional complex manifold (Hansen er a1 1978). The resulting complex 
9' will be denoted by C4'. Actually, we do not need the whole of C9' but only some 
sufficiently large complex thickening C'4' of 4", where 

4'c C'4' c c4' 
We assume that C'4' can be chosen such that it is large enough to allow a four-complex- 
parameter family of good cuts, and yet small enough to ensure that all physically 
interesting functions, which are assumed analytic on S', are holomorphic on C'4' t .  As 
we shall see, the four-manifold of good cuts can be endowed with a naturally defined 
Riemannian metric. Newman and Penrose and others call this space H space. 

Let { x " }  be some coordinate system on H, and x a  = x " ( u )  some world line in H, 
where U is a complex parameter. To each value of U there is a point of H and hence a 
good cut of C'9'. U may therefore be used as aparameter along the generators of C9'. 
Labelling the generators of C'9' by stereographic coordinates 5, we see that (U, l, [) 
forms a coordinate system on C'4'. Note that, since we are in the complex domain, l i s  
not restricted to be the complex conjugate of l. Each U = constant cut of C'4" defines 

t Throughout this paper we choose the complex thickening of $* to be as small as possible. In particular, in 

the case of flat space-time, we choose it  to be zero and identify C'$+ with 3': we then have H = M 
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an asymptotically shear-free null hypersurface in C'M, where C'M is the complex 
thickening of M. 

By introducing r, a parameter along the generators of these hypersurfaces, normal- 
ised such that 

r = R+o(R'), 

it can be seen that 

{ x " ~  = (U, r, t 
can be used as a coordinate system in the neighbourhood of (74'. A vector fi", tangent 
to the generators of C'4+, is defined by 

fi" = dx"/du = S;. 
Since C'4+ is null and R vanishes on C'$', R,, is also tangent to the generators of e$'. 
We therefore choose R such that 

R,, =-Sa on C'$+. 

In terms of this system, the line element on C'4+ assumes the form 

ds2 = -(2 du dr + d[ d&2P2). (2.1) 

An associated null tetrad (pi?"&"&") on C'4' is given by 

li" = s;, &" = -2ps;, riz" = -2ps;. 1 "a =-sa A 

1, 

Using (2.1) it is easily checked that these vectors do in fact satisfy the usual null tetrad 
orthogonality relations. It is convenient to express the null tetrad in terms of two spinor 
dyads ( 6 ~ ,  CA) and ( 6 ~ ,  CA,), where 

6AL^A = 6 A p '  = 1 

f i a  - -AAA' p = 

and 
AA A A  

7 & " = 1  0 . A a - -AAA' m -0 L , - L  L , 

Let +ABCD and  AB be the Weyl and Maxwell spinors associated with the solution. 
Under the condition of asymptotic flatness, it can be shown that $ABCDR-' and 4 ~ s R - l  
are finite and smooth on C'4' (Penrose 1968). We may therefore define the following 
components of these quantities on C'4': 

* z = ~ - ' ~ a s c n ~  0 0 0 , A A  AB ACAD 
*?=R-'$ABC@ 0 0 9 

A A ABACAD 
* g = n - ' $ A B C @  6 9 

AA AB 
+ ; = R - ' 4 A f l  0 9 

AA AB 

A A A B A C A D  

A A  ABACAD 
*i=f i - '$ABC# 0 L , 

AA ABACAD 
$;=n-'$ABC& L 6 9 

AAAB 
4 ? = a - ' 4 A f l  L > 4 : = f l n - ' 4 A B L  L , 

and similarly for 6: and 6:. 
neighbouring point xg +dx" must have the form 

Let x: =x" (uo)  be some point on the world line. The cut associated with a 

U = UO+L,(UO, 5, [) dx". 

f Throughout this paper we use the convention that objects with bold indices live in M, while objects with 
ordinary indices live in H. 
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This defines the quantity La. It can be shown that La must satisfy (Hallidy and 
Ludvigsen 1979, Luwigsen 1977) 

aZLa = 0.  (2 .2 )  
Here a, the generalised edth operator associated with P, is defined by 

877 = 2P'- a(PSq)/eg, ( 2 . 3 ~ )  

where 77 has spin weight s. Similarly 8 is defined by 

8q = 2P'+s a(P-sq ) /a l  ( 2 . 3 b )  

If x"(u) and x'(u +du)  = x" +dxa  are two neighbouring points on the world line, then 

du =La dx". 

Thus 

Lava = 1, (2 .4 )  
where v a  is defined to be x"(=dx"/du). 

dJ A df/2iPz, and we define dS( = (1/4.rr) x surface element) by 
The (complex) surface element of the ( U  =constant) cuts of C'$+ is given by 

dS = d[ A d[/8.rriP2. 

By the above prescription we have been able to define P, 4;, &), (Lp, &), La and dS 
uniquely on each ( U  =constant) cut, and hence on each point of the world line. By 
employing a space-filling congruence of such world lines or, equivalently, a vector field 
U" tangent to the congruence, these quantities can be defined at all points of H. They 
have the functional form q(xa, 5, f, U"). Using a different congruence and hence a 
different U" field, these quantities can again be found. It can be shown that they 
transform according to 

P(v"') = w P ( u " ) ,  &U"') = W24P(v"), r$p(v"')= w'&p(u"), 
$p(v" ' )  = w3*p(v"), l jp (v" ' )=  W'ljp(v"), L,(v"') = w-lLa(v") ,  

dS(v"') = W-* dS(v"), 

where W=L"u"', This leads us to make the following definition: A quantity 
q ( x " ,  1; f, U") which transforms according to 

q ( v " ' )  = W-"q(v") 

will be said to have H conformal weight (HCW)W. Using the fact that a2W = 0, one can 
prove the following theorem (Hansen and Ludvigsen 1977): 

Theorem 1. If q has spin weight (sw) s and HCW w, where w a s ,  then B w - s + l q  has 
HCW s - 1 (and, of course, sw w + 1); and conversely. Note that this theorem implies 
that equation (2 .2 )  is H conformally invariant. 

A distance function on H is defined by 
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By considering the weights of La and dS, it is seen that I)dx"l( is invariant. Newman has 
shown that Ildx"ll induces a Riemannian metric gab on H (Newman 1977): 

Using (2.4) and (2.5) we have 

(2.6) 

Throughout the remainder of this paper it will be found convenient to normalise U 
such that uava = 2. Equation (2.6) now gives 

J d S = 1 .  (2.7) 

Differentiating (2.6) with respect to U", and again using ( 2 3 ,  we obtain 

ua = 2 La dS. I 
We conclude this section with a discussion of the spinor decomposition of La. It can 

be shown that La is null with respect to the H space metric (Hansen and Ludvigsen 
1977); it can therefore be written in terms of spinors: 

La = OAOA'. 

So as to be consistent with the weight of La, oA is assumed to have sw $ and HCW 4, and 
OAP, is assumed to have sw -$ and HCW $. If, in addition, OA and OA. satisfy 

(2.9) 

(2.10) 

then tj2L, = 0 is automatically satisfied. Note that theorem 1 guarantees that equations 
(2.9) and (2.10) are invariant. It may be shown that OA and OAP can be chosen such that 

0ALA = OA'LA = I, 

CAB = 2OIALBl- EASE' = 2O[A'bB'], (2.11) 

where LA = ~ O A  and LA' = 60~8  [Hansen and Ludvigsen 1977). Thus 

where 

gab = EABEA'B'. (2.12) 

3. The F function and curvature properties of H 

In the previous section the function P(x", 5, U " )  was defined. In terms of P, the 
Gaussian curvature of the cut corresponding to x" (in the scaling defined by U " )  is given 
by 

K = a6 In P. 
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For flat H space, K is unity, but in general K - 1 does not vanish. In general it can be 
shown that K may be written in the form (Hansen and Ludvigsen 1977) 

K = 1 -ia2F. (3.1) 
Equation (3.1) defines the F function. Using the known transformation law for P, it can 
be shown that F transforms with HCW 0 and, of course, sw -2. Both F and K will play a 
major role in the following analysis. 

Making use of the well-known formula (Lind er a1 1972) 

(h - a8)q = 2~Kt7, (3.2) 
where t) has sw s, it may be shown that 

80,. = - $ s F o ~ '  + FLA,. 

0 A ' 8 0 ~ ,  = -F. (3.4) 

(3.3) 
Contracting (3.3) with oA',  we obtain 

Using (2.4), (2.12) and (3.4) it can be shown that 

(3.5) 1 
V u '  = 0 ~ 0 ~ f - t  LALA'-~~FoALA'. 

Contracting (3.5) with we obtain 

uAA'LA' = oA. (3.6) 
Let V ,  be the covariant derivative on H. Since V, does not in general preserve HCW 

(that is, if q has a well-defined HCW, V , q  in general does not), we introduce another 
differential operator, bh, defined by (Hansen and Ludvigsen 1977) 

b Lt) = ( V a  + w(Pa/P))q* 
where w is the HCW of q, and Pa is given by Pa = V,P. One can easily show that BL 
preserves the HCW of t). 

Since, for fixed 5 and La can be considered as being a vector field on H, we may 
calculate 

It can be shown that bhLb is given by (Hansen and Ludvigsen 1977) 

b LLb = VaLb + (Pa/P)Lb. 

PhL b -1 - 6 6 2 GLaLb - $ aGL(,  6L.b) + G aL, 6Lb, 

where 

G = L " ( b P )  = L"(V,F) t. 
It can also be shown that 

S2(P,/P) = a2(P/P)La 

and 

a2(P/P)  = a  a4G, 

where P = v"V,P. In terms of spinors, equation (3.7) becomes 

b LA'Og = 0 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

t In Hansen and Ludvigsen (1977) the letter C was used for the G function, 
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(3.11) 

Making use of (3.10) and (3.11), the spinor components of the curvature tensor of H 
can be found (Hansen and Ludvigsen 1977): 

@ ~ A * B ,  = A = 'PABCD = 0 

1 1 1 2  I ,!JA,B,c-D,  = - 6 4 H O ~ ~ O ~ * O c ' o ~ ' - -  63HO(~rO~'Oc*Lp) +- 6 HO(A*OB,LC-LD,) 
4! 3! 2! 

(3.12) 

(3.13) 

It is thus seen that the F function completely determines the curvature of H. 

equations on C'$+ imply that 
In terms of the coordinate and tetrad system described in § 2, the spin coefficient 

6: = --6*(P/P) 

(see equation (2.30) of Lind et a1 (1972). Thus, by equation (3.9), we have 

6: = -2 a4G. (3.14) 

Therefore 6: may also be used to determine the curvature of H. Comparing equation 
(3.12) and (3.14) with the spin-2 case in the Appendix, it is seen that I,!JA,B,c*D, is 
obtained from 4: in the same manner as in a spin-2 field ~ A + B , c ' D '  is obtained from its 
null datum q! on 9+. 

We conclude this section by giving a relation between P/P and the 'acceleration' 
va(= V b V b V a )  of the world line (Ludvigsen 1977): 

va = -6 J (P/P)La dS. (3.15) 

Equation (3.15) may be obtained by taking the covariant derivative of both sides of 

u a = 2  L a d s  I 
and observing that 

P 'LaLb] = 0 

and 
Ph dS  = V, dS  + 2(Pa/P) d S  = 0. 

4. Maxwell fields on H 

(3.16) 

In the previous section we saw that 6: determines the Weyl spinor I ,!JA,B,C,D,  of H in 
exactly the same way as the null datum q! of a spin-2 field determines T/A,B,c,D,. It is 
therefore reasonable to conjecture that the analogous process might work for &:, giving 
a Maxwell spinor on H. In this section we show that this conjecture is indeed justified. 
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By analogy with equation (A2), we define a function B by 
$0 2 - - -a2B. (4.1) 

Since 4: has sw 1 and HCW -2, theorem 1 implies that B has sw -1 and HCW 0. By 
calculating 4; at two neighbouring points of H, it can be shown that it satisfies 

P$ = LaP'& 

Ph(B2B) = Lab'(a2B-), (4.2) 

or, on using (4.1), 

where P' = uaPh.  After a short calculation, using equations (2.3) and (3.8), it can be 
shown that (4.2) is equivalent to 

3'(VaB) =La 3'8. (4.3) 
Introducing a function C defined by 

C = LaVaB, 

we see that 

a3C = L a  B3(VaB) + 3 3L" B2(VaB). (4.4) 

Since LaLb = 3LaLa = 0, one can see immediately that equations (4.3) and (4.4) 
imply that a3C vanishes. By analogy with the Appendix we define a spinor field 4AfBt by 

~ A P B ,  has sw 0 and, after a short calculation, can be shown to have HCW 0. It is therefore 
independent of the u a  field. Since a3C = 0 and a 2 0 ~ ,  = BLA, = 0, one can easily check 
that &$A,B, = 0. Thus ~ A ' B ,  is independent of 5 ;  also, since all quantities are assumed to 
be holomorphic, 4A'Bs must also be independent of f. 4 A s B , ( ~ a )  is therefore a well- 
defined spinor field on H. 

After a rather long calculation, which makes use of (4.3), one can show that q5A,B8 is a 
Maxwell spinor. That is, it satisfies 

V Z 4 A ' B '  = 0. 

It will be found useful to have 4A,Bs expressed in the form of an integral. This can be 
achieved as follows. Since dS  = 1, we have 

4 A ' B '  = I 4A'B'  dS 

By integrating by parts (Ludvigsen 1977), this last expression gives 

c$A,B, = 3 I ~*COA'OB, dS. (4.6) 
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Using (4.3) one can show that B2C can be written in the form 

(4.7) 2 2  ..a c=a2B+a3* 
for some function (which need not concern us here) x. Substituting (4.7) into (4.6), 
integrating by parts, and using the fact that 83(oA,oa,) vanishes, we obtain 

Finally, contracting with v z  and using equation (3.6), we obtain 

Equation (4.8) will play a central role when we come to consider the equation of 
motion of a charged particle. 

5. The motion of a charged particle in flat space-time 

In this section we consider the classical Lorentz-Dirac equation of motion for a charged 
point particle in flat space-time M. 

Since the 4+ of flat space-time possesses a four-real-parameter family of good cuts 
(namely those cuts formed by the intersection of 4' by the null cones emanating from 
points of M), it is not necessary to thicken 4' into the complex?. We may therefore 
choose C'4' to be S', and the corresponding H space can be seen to be real and 
equivalent to the original space-time M. The same index labels may therefore be used 
for both M and H. 

Consider a point particle with charge e, whose world line is given by x a  = x " ( u ) ,  
where, as usual, U is normalised such that vava = 2(va = xa) .  Let F:b be the retarded 
field and Fab the advanced field produced by the particle. Both F:b and Fib are 
obviously singular on the world line. The radiation field rb, defined by 

is, however, perfectly regular everywhere and on the world line can be shown to have 
the explicit form (Rohrlich 1965) 

fe(&jb - i ;avb)*  (5.1) 

In spinor notation these fields can be written 

F:b = ~ ~ E A ~ B '  -I- ~ : * B ~ E A B ,  

Fib = ~ A B E A ' B '  ~ A ' B ' E A B ,  

Under the physically reasonable assumption that $4- vanishes on 4+, we see that 

4; = 6;- -44 - on$+. 
R 

t See footnote on page 1758. 



1766 M Ludvigsen 

Thus 4: is the null datum for ~ A * B ' ,  and the Maxwell field 4 A , B ,  formed from 4: (see 0 4 

and Appendix) will be equal to ~ A , B , .  

(Rohrlich 1965) 

R 

R 
The Dirac-Lorentz equation of motion for the particle can be written in the form 

mlj = (ev b/J2)s, ( 5 . 2 )  

where m is the particle's renormalised mass. Substituting ( 5 . 1 )  into (5.2) we obtain 

J2 mljn =$e2[;" - (vbvb/2)vn] ,  

where the right-hand side can be recognised as the Abraham-Dirac-Lorentz radiation 
reaction term. Using equation ( 5 . 1 )  it can be seen that F*(lbvb vanishes on the world 

line, where F*nb is the dual of Fnb. Equation (5.2) is therefore equivalent to 
R 

mljn = ( e v b / J Z ) ( g b n - f b n ) ) .  (5.3) 

Finally, using the well-known fact that (Penrose 1968) 
F b n  - g * b n  =2EBA4A'B' , 

it is seen that (5.3) may be written as 
mVAA'= ( ~ / J ~ ) ~ ? V B B , E  B A  4 A'B' 4A'B' 

or 
A A'B' 

- 
mljAA' = -42 evBc4 . (5.4) 

6. The general relativistic equation of motion for a charged particlet 

In the previous section we described the motion of a particle by means of its world line. 
However, in general relativity, where a particle is usually represented by a singularity in 
space-time, such a description is not appropriate: little sense can be made of the 
concept of the world line of a singularity in its own space-time. As we shall see, this 
difficulty can be avoided by describing the motion not in the original space-time but in 
H space. 

We use a charged Robinson-Trautman type I1 solution (Newman and Posadas 
1969) as a general relativistic model for a charged particle. Such solutions have the 
property that the null cones emanating from the singularity are completely shear-free. 
These null cones intersect 4' in a one-parameter family of good cuts and, when 4' is 
made complex, form a world line in the space of all good cuts; that is, a world line in the 
H space of the solution. This world line will be interpreted as the particle's world line. 

The equation of motion for the particle can be obtained from the dynamical 
equations (essentially the Bianchi identities) governing the evolution of the solution. In 
the coordinate system on C4+ based on the world line, these equations have the form 
(Newman and Posadas 1969) 

(6 .1)  4: - 3(P/P)(t:  = -8SK + 24:4:, 

t This section supplies details of results announced in Ludvigsen (1978). 
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Equation (6.4) implies that 4: is independent of 4'. Since it is assumed to be holomor- 
phic on C Y + ,  it must also be independent of [. Thus 4: has the form c#J:(u). Since 
l d S =  1, we have 

&=I &is. 

Differentiating with respect to U and using the fact that (dS)' = - (2p /P)  dS, we obtain 

4: = I [4 : - 2(P/ P)4:] dS  = - B& dS = 0, I 
where we have used equation (6.3). Therefore 4: is a constant. For the special case of a 
Reissner-Nordstrom solution, 4: is equal to the charge. We therefore define 4: to be 
the charge e of the particle, i.e. e = 4:. Equations (6.3) and (6.2) now become 

2 e P / ~  = 34: (6.5) 

B& = 4e4: = -4e B ~ B ,  (6.6) 

(6.7) 

and 

where BZB = -4; (see 0 4). Equation (6.6) implies that (I; has the form 

(I; = - 2 h  m ( U )  - 4e BB. 

Equation (6.7) implies that 

- 2 f i  m = I I@ dS. 

Differentiating with respect to U, and using equations (6.1), (6.7) and (6.5), we obtain 

4 P 
= J ( - 6 8 ~  -24; B3B - 2 h - m  -4e BB- d S  

P P 

= - 2 1  (4;B2B+6B34g)dS 

= -2 B(& BB) dS = 0. 

m is therefore a constant. In the special case of a Reissner-Nordstrom solution, m is 
equal to the mass of the solution. We therefore define m to be the mass of the particle. 

6&mP/P=-B8K+4e(BB)'-6 BB Bq5;-4:B2B. (6.8) 

Substituting all this information into (6 .  l ) ,  we obtain 
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Using the definition of a and equation (6.5), it can be seen that 

( a ~ ) '  = ( P / P )  BB - ~ ( P / P ) B  +aB = ( 1 / 2 e ) ( a 4 ~ ~  - a 2 4 , ~ ) + a B .  
Substituting this into (6.8), we obtain 

6 h  m P / P  = 4 6 K  +4e B B  -2a2(4;B). 

It can be shown that a& has the form (Ludvigsen 1977) 

B8K = B2X. 

Thus equation (6.9) has the form 

6 JZ mP/P = a2 Y + 4e aB. 

(6.9) 

(6.10) 

Finally, multiplying both sides of (6.10) by La, integrating by parts, and using equations 
(3.15) and (4.9), we obtain 

B' B aL, d S  = -2edA'B'vA h mv, = -4e aBL, d S  = 4e I I 
or, equivalently, 

(6.11) 

Equation (6.11) is our equation of motion for the charged particle. Referring back to 
equation (5.4), it can be seen that it is identical in form to the classical equation of 
motion in flat space-time. However, the motion is now described in the H space of the 
solution and not in the original space-time. In the limiting case of zero curvature, M is 
identical to H, and equation (6.11) becomes the classical equation of motion. For 
vanishing e, it is seen that the particle moves along a geodesic in H. 

As was mentioned in § 2, H is necessarily complex for a radiating system, and so 
equation (6.11) describes the particle's motion not in a real space-time but in a complex 
space-time. Thus, within our present conceptual framework, it is difficult to fix any 
precise physical meaning on equation (6.10). 

The reader is referred to Hallidy and Ludvigsen (1979), KO et a1 (1977) and 
Ludvigsen (1976) for a fuller discussion of this difficulty. 
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Appendix. The generalised Kirchoff integral 

Let M be flat space-time and VA'B' ... K' a spin-n/2 field which is singularity-free 

throughout M. Note that, since M is flat, it can be identified with H. We may therefore 
use the same index labels for both M and H. In terms of our formalism, the generalised 
Kirchoff theorem of Penrose (Newman and Penrose 1968) states that 

Y '  

n 

... K ' ( Q ) = -  P'~O,OA. .  . oK,dS, (AI) I 
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where 
0 7, = a - ' ~ A , . . . K ~ t A ' .  . . zK' on $+, 

and the integral is performed over the cut of $+ corresponding to the point Q in M. 

the form 
Since 7: has sw 4 2 ,  one can show, by means of an induction argument, that it has 

(A21 7: = - [ l / ( n  - l ) ! ]  ana, 

where the factor l / ( n  - l ) !  has been included for notational purposes. Since 7: has 
HCW -n/2 - 1 and sw n, theorem 1 implies that CY has sw -n and HCW n - 1 .  

Using the known transformation properties of LA and a, one can show that 751 
satisfies 

643) 0 0 Ph7" = LaP'qn. 

S2(Pa/P) =La  B2(P/P) = 0. 

Since H is flat, the F function vanishes, and equations (3.8) and (3.9) give 

Using this fact, one can show that equation (A3) is equivalent to 

(A41 0 B"(PLa)=-(n-l)!L,Vr] . .  

We introduce a null tetrad (N,, La, Ma, fia) on H defined by - 
Na = LALA' La = oAoA' Ma = OALA' Ma = LAOA'. 

It can easily be shown that, in the case of flat H space, these vectors satisfy 

B2La = 0, B2Na = 0, BMa = 0, B 3 f i a  = 0 

B f i a  = Na -La, 

BN, =-Ma, BL, =Ma.  

a2fia = -2Ma 

Expanding Bba in terms of this tetrad, we have 

P ha = ONa + yL, + SM, + &fa, (A61 
where 

p = Labbar. (A71 

Substituting (A6) into (A4) and using (A5), we obtain, after a little algebra, the relations 

Equation (A9) implies that 

where we have integrated by parts and used the fact that B"+'(OA, . .  . OK,) vanishes. 
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Substituting (Al)  into (AlO), we obtain 

Consider now the spinor q5A*,.,Ks defined by 

It can be checked that 4Af,,,K' has zero weight, and, using equation (A8), that it is 
independent of f and hence also of [. Since dS  = 1, (A12) gives 

where we have integrated by parts. Comparing (A13) with (A1 l), we see that 4A,,.,K' 
and T ~ ' . . . ~ '  are identical. 

We have therefore shown that, given @ which has been obtained from the null datum 
7 ;  of a spin-n/2 field by equations (A2) and (A7), the field is given by equation (A12). 
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